Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 26720-26727, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38051161

RESUMO

Separation of carbon dioxide (CO2) from point sources or directly from the atmosphere can contribute crucially to climate change mitigation plans in the coming decades. A fundamental practical limitation for the current strategies is the considerable energy cost required to regenerate the sorbent and release the captured CO2 for storage or utilization. A directly photochemically driven system that demonstrates efficient passive capture and on-demand CO2 release triggered by sunlight as the sole external stimulus would provide an attractive alternative. However, little is known about the thermodynamic requirements for such a process or mechanisms for modulating the stability of CO2-derived dissolved species by using photoinduced metastable states. Here, we show that an organic photoswitchable molecule of precisely tuned effective acidity can repeatedly capture and release a near-stoichiometric quantity of CO2 according to dark-light cycles. The CO2-derived species rests as a solvent-separated ion pair, and key aspects of its excited-state dynamics that regulate the photorelease efficiency are characterized by transient absorption spectroscopy. The thermodynamic and kinetic concepts established herein will serve as guiding principles for the development of viable solar-powered negative emission technologies.

2.
J Am Chem Soc ; 145(40): 22213-22221, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751528

RESUMO

Carbonate formation presents a major challenge to energy storage applications based on low-temperature CO2 electrolysis and recyclable metal-air batteries. While direct electrochemical oxidation of (bi)carbonate represents a straightforward route for carbonate management, knowledge of the feasibility and mechanisms of direct oxidation is presently lacking. Herein, we report the isolation and characterization of the bis(triphenylphosphine)iminium salts of bicarbonate and peroxybicarbonate, thus enabling the examination of their oxidation chemistry. Infrared spectroelectrochemistry combined with time-resolved infrared spectroscopy reveals that the photoinduced oxidation of HCO3- by an Ir(III) photoreagent results in the generation of the short-lived bicarbonate radical in less than 50 ns. The highly acidic bicarbonate radical undergoes proton transfer with HCO3- to furnish the carbonate radical anion and H2CO3, leading to the eventual release of CO2 and H2O, thus accounting for the appearance of H2O and CO2 in both electrochemical and photochemical oxidation experiments. The back reaction of the carbonate radical subsequently oxidizes the Ir(II) photoreagent, leading to carbonate. In the absence of this back reaction, dimerization of the carbonate radical provides entry into peroxybicarbonate, which we show undergoes facile oxidation to O2 and CO2. Together, the results reported identify tangible pathways for the design of catalysts for the management of carbonate in energy storage applications.

3.
J Phys Chem Lett ; 12(40): 9774-9782, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34595929

RESUMO

Enhanced delocalization is beneficial for absorbing molecules in organic solar cells, and in particular bilayer devices, where excitons face small diffusion lengths as a barrier to reaching the charge-generating donor-acceptor interface. As hybrid light-matter states, polaritons offer exceptional delocalization which could be used to improve the efficiency of bilayer organic photovoltaics. Polariton delocalization can aid in delivering excitons to the donor-acceptor interface, but the subsequent charge transfer event must compete with the fast decay of the polariton. To evaluate the viability of polaritons as tools to improve bilayer organic solar cells, we studied the decay of the lower polariton in three cavity systems: a donor only, a donor-acceptor bilayer, and a donor-acceptor blend. Using several spectroscopic techniques, we identified an additional decay pathway through charge transfer for the polariton in the bilayer cavity, demonstrating charge transfer from the polariton is fast enough to outcompete the decay to the ground state.

4.
J Am Chem Soc ; 143(36): 14511-14522, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474559

RESUMO

The role of molecular vibration in photoinduced electron transfer (ET) reactions has been extensively debated in recent years. In this study, we investigated vibrational wavepacket dynamics in a model ET system consisting of an organic dye molecule as an electron acceptor dissolved in various electron donating solvents. By using broad band pump-probe (BBPP) spectroscopy with visible laser pulses of sub-10 fs duration, coherent vibrational wavepackets of naphthacene dye with frequencies spanning 170-1600 cm-1 were observed in the time domain. The coherence properties of 11 vibrational modes were analyzed by an inverse Fourier filtering procedure, and we discovered that the dephasing times of some vibrational coherences are reduced with increasing ET rates. Density functional theory calculations indicated that the corresponding vibrational modes have a large Huang-Rhys factor between the reactant and the product states, supporting the hypothesis that the loss of phase coherence along certain vibrational modes elucidates that those vibrations are coupled to the reaction coordinate of an ET reaction.

5.
J Am Chem Soc ; 143(35): 14352-14359, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432978

RESUMO

Super-reducing excited states have the potential to activate strong bonds, leading to unprecedented photoreactivity. Excited states of radical anions, accessed via reduction of a precatalyst followed by light absorption, have been proposed to drive photoredox transformations under super-reducing conditions. Here, we investigate the radical anion of naphthalene monoimide as a photoreductant and find that the radical doublet excited state has a lifetime of 24 ps, which is too short to facilitate photoredox activity. To account for the apparent photoreactivity of the radical anion, we identify an emissive two-electron reduced Meisenheimer complex of naphthalene monoimide, [NMI(H)]-. The singlet excited state of [NMI(H)]- is a potent reductant (-3.08 V vs Fc/Fc+), is long-lived (20 ns), and its emission can be dynamically quenched by chloroarenes to drive a radical photochemistry, establishing that it is this emissive excited state that is competent for reported C-C and C-P coupling reactivity. These results provide a mechanistic basis for photoreactivity at highly reducing potentials via singlet excited state manifolds and lays out a clear path for the development of exceptionally reducing photoreagents derived from electron-rich closed-shell anions.

6.
Nat Chem ; 13(1): 70-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288893

RESUMO

Electron transfer reactions facilitate energy transduction and photoredox processes in biology and chemistry. Recent findings show that molecular vibrations can enable the dramatic acceleration of some electron transfer reactions, and control it by suppressing and enhancing reaction paths. Here, we report ultrafast spectroscopy experiments and quantum dynamics simulations that resolve how quantum vibrations participate in an electron transfer reaction. We observe ballistic electron transfer (~30 fs) along a reaction coordinate comprising high-frequency promoting vibrations. Along another vibrational coordinate, the system becomes impulsively out of equilibrium as a result of the electron transfer reaction. This leads to the generation (by the electron transfer reaction, not the laser pulse) of a new vibrational coherence along this second reaction coordinate in a mode associated with the reaction product. These results resolve a complex reaction trajectory composed of multiple vibrational coordinates that, like a sequence of ratchets, progressively diminish the recurrence of the reactant state.

7.
J Phys Chem B ; 124(49): 11236-11249, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33231450

RESUMO

The development of non-natural photoenzymatic systems has reinvigorated the study of photoinduced electron transfer (ET) within protein active sites, providing new and unique platforms for understanding how biological environments affect photochemical processes. In this work, we use ultrafast spectroscopy to compare the photoinduced electron transfer in known photoenzymes. 12-Oxophytodienoate reductase 1 (OPR1) is compared to Old Yellow Enzyme 1 (OYE1) and morphinone reductase (MR). The latter enzymes are structurally homologous to OPR1. We find that slight differences in the amino acid composition of the active sites of these proteins determine their distinct electron-transfer dynamics. Our work suggests that the inside of a protein active site is a complex/heterogeneous dielectric network where genetically programmed heterogeneity near the site of biological ET can significantly affect the presence and lifetime of various intermediate states. Our work motivates additional tunability of Old Yellow Enzyme active-site reorganization energy and electron-transfer energetics that could be leveraged for photoenzymatic redox approaches.


Assuntos
NADPH Desidrogenase , Domínio Catalítico , Transporte de Elétrons , Oxirredução
8.
J Phys Chem Lett ; 11(20): 8630, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991177
9.
J Phys Chem Lett ; 11(15): 6389-6395, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32678609

RESUMO

The main result is that the long-range phase coherence of the polariton states formed by strong coupling between a photon mode in a cavity and an ensemble of molecules leads to exceptionally low entropy of the upper and lower polariton states, starkly contrasting with the dark states. That result means that spectroscopy does not correctly order the free energy of the excited states because there is a significant entropic contribution to the free energy, which turns out to comparable to the electronic energy gap between the lower polariton state and the dark-state manifold. The reordered states, according to their free energy, is important to predict the potential of polariton states for reactivity, to predict spontaneous photophysical dynamics, or to understand their decoherence. The entropic contribution adds to the polariton electronic gap, rendering states surprisingly more reactive than anticipated from the input excitation energy. This apparently "additional" reactivity, evident from the thermodynamics, suggests how the low entropy of highly coherent states can be exploited as a resource.

10.
Proc Natl Acad Sci U S A ; 117(21): 11289-11298, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385159

RESUMO

The properties of organic molecules can be influenced by magnetic fields, and these magnetic field effects are diverse. They range from inducing nuclear Zeeman splitting for structural determination in NMR spectroscopy to polaron Zeeman splitting organic spintronics and organic magnetoresistance. A pervasive magnetic field effect on an aromatic molecule is the aromatic ring current, which can be thought of as an induction of a circular current of π-electrons upon the application of a magnetic field perpendicular to the π-system of the molecule. While in NMR spectroscopy the effects of ring currents on the chemical shifts of nearby protons are relatively well understood, and even predictable, the consequences of these modified electronic states on the spectroscopy of molecules has remained unknown. In this work, we find that photophysical properties of model phthalocyanine compounds and their aggregates display clear magnetic field dependences up to 25 T, with the aggregates showing more drastic magnetic field sensitivities depending on the intermolecular interactions with the amplification of ring currents in stacked aggregates. These observations are consistent with ring currents measured in NMR spectroscopy and simulated in time-dependent density functional theory calculations of magnetic field-dependent phthalocyanine monomer and dimer absorption spectra. We propose that ring currents in organic semiconductors, which commonly comprise aromatic moieties, may present new opportunities for the understanding and exploitation of combined optical, electronic, and magnetic properties.

11.
J Phys Chem Lett ; 11(9): 3443-3450, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32290662

RESUMO

Conjugated porphyrin arrays are heavily investigated as efficient molecular systems for photosynthesis and photocatalysis. Recently, a series of one-, two-, and six-zinc-porphyrin arrays, noncovalently linked through benzene-based hubs, have been synthesized with the aim of mimicking the structure and function of the bacteriochlorophyll "special pair" in photosynthetic reaction centers. The excitonically coupled porphyrin subunits are expected to activate additional excited state relaxation channels with respect to the monomer. Here, we unveil the appearance of such supramolecular electronic interactions using ultrafast transient absorption spectroscopy with sub-25 fs time resolution. Upon photoexcitation of the Soret band, we resolve energy trapping within ∼150 fs in a delocalized dark excitonic manifold. Moreover, excitonic interactions promote an additional fast internal conversion from the Q-band to the ground state with an efficiency of up to 60% in the hexamer. These relaxation pathways appear to be common loss channels that limit the lifetime of the exciton states in noncovalently bound molecular aggregates.

12.
J Phys Chem Lett ; 11(7): 2667-2674, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32186878

RESUMO

Strong light-matter coupling is emerging as a fascinating way to tune optical properties and modify the photophysics of molecular systems. In this work, we studied a molecular chromophore under strong coupling with the optical mode of a Fabry-Perot cavity resonant to the first electronic absorption band. Using femtosecond pump-probe spectroscopy, we investigated the transient response of the cavity-coupled molecules upon photoexcitation resonant to the upper and lower polaritons. We identified an excited state absorption from upper and lower polaritons to a state at the energy of the second cavity mode. Quantum mechanical calculations of the many-molecule energy structure of cavity polaritons suggest assignment of this state as a two-particle polaritonic state with optically allowed transitions from the upper and lower polaritons. We provide new physical insight into the role of two-particle polaritonic states in explaining transient signatures in hybrid light-matter coupling systems consistent with analogous many-body systems.

13.
J Am Chem Soc ; 142(10): 4555-4559, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32078316

RESUMO

We report mechanistic insights into an iridium/nickel photocatalytic C-O cross-coupling reaction from time-resolved spectroscopic studies. Using transient absorption spectroscopy, energy transfer from an iridium photocatalyst to a catalytically relevant Ni(II)(aryl) acetate acceptor was observed. Concentration-dependent lifetime measurements suggest the mechanism of the subsequent reductive elimination is a unimolecular process occurring on the long-lived excited state of the Ni(II) complex. We envision that our study of the productive energy-transfer-mediated pathway would encourage the development of new excited-state reactivities in the field of metallaphotocatalysis that are enabled by light harvesting.

14.
J Am Chem Soc ; 142(5): 2562-2571, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922408

RESUMO

Organic photovoltaic (OPV) efficiencies continue to rise, raising their prospects for solar energy conversion. However, researchers have long considered how to suppress the loss of free carriers by recombination-poor diffusion and significant Coulombic attraction can cause electrons and holes to encounter each other at interfaces close to where they were photogenerated. Using femtosecond transient spectroscopies, we report the nanosecond grow-in of a large transient Stark effect, caused by nanoscale electric fields of ∼487 kV/cm between photogenerated free carriers in the device active layer. We find that particular morphologies of the active layer lead to an energetic cascade for charge carriers, suppressing pathways to recombination, which is ∼2000 times less than predicted by Langevin theory. This in turn leads to the buildup of electric charge in donor and acceptor domains-away from the interface-resistant to bimolecular recombination. Interestingly, this signal is only experimentally obvious in thick films due to the different scaling of electroabsorption and photoinduced absorption signals in transient absorption spectroscopy. Rather than inhibiting device performance, we show that devices up to 600 nm thick maintain efficiencies of >8% because domains can afford much higher carrier densities. These observations suggest that with particular nanoscale morphologies the bulk heterojunction can go beyond its established role in charge photogeneration and can act as a capacitor, where adjacent free charges are held away from the interface and can be protected from bimolecular recombination.

15.
J Phys Chem Lett ; 11(2): 516-523, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31884794

RESUMO

Nanoparticles of acenes exhibit highly efficient intermolecular singlet fission (SF). Recent reports indicate that altering the morphology of 6,13-bis-(triisopropylsilylethynyl)pentacene (TIPS-Pn) nanoparticles has a profound influence on their SF dynamics. Here, we show that poly(vinyl alcohol) (PVA) induces a phase transition in preformed TIPS-Pn nanoparticles. These nanoparticles are amorphous when initially formed but crystalline after addition of PVA. Surface characterization indicates that a diffuse PVA layer surrounds the nanoparticles. We propose that a periodic interaction between the hydroxyl groups of PVA and TIPS groups of TIPS-Pn on the nanoparticle surface induces a large-scale structural rearrangement to yield crystalline TIPS-Pn. Such reorganization in preformed organic nanoparticles is unprecedented, and we believe that this is the first report of such an effect induced by polymer adsorption. Transient absorption spectroscopic results reveal that SF within these nanoparticles is accelerated by an order of magnitude upon structural rearrangement.

16.
Nat Chem ; 12(1): 71-75, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31792387

RESUMO

Flavin-dependent 'ene'-reductases (EREDs) are exquisite catalysts for effecting stereoselective reductions. Although these reactions typically proceed through a hydride transfer mechanism, we recently found that EREDs can also catalyse reductive dehalogenations and cyclizations via single electron transfer mechanisms. Here, we demonstrate that these enzymes can catalyse redox-neutral radical cyclizations to produce enantioenriched oxindoles from α-haloamides. This transformation is a C-C bond-forming reaction currently unknown in nature and one for which there are no catalytic asymmetric examples. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where ground-state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the vinylogous α-amido radical formed after cyclization. This mechanistic manifold was previously unknown for this enzyme family, highlighting the versatility of EREDs in asymmetric synthesis.


Assuntos
Mononucleotídeo de Flavina/química , Radicais Livres/química , Oxirredutases/química , Oxindóis/síntese química , Amidas/química , Biocatálise , Ciclização , Oxirredução , Estereoisomerismo
17.
18.
Nanoscale ; 11(5): 2385-2392, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30667035

RESUMO

Here we describe a facile, one-step synthesis of a binary organic nanoparticle composed completely of NIR-absorbing small molecules, a quatterylene diimide and a vanadyl napthalocyanine, using Flash Nanoprecipitation. We show that the molecules are co-encapsulated within an amphiphilic block copolymer shell by observing distinct ultrafast dynamics in the binary nanoparticles compared to nanoparticles of their individual components, which we rationalize as a photoinduced charge transfer. We then draw similarities between the charge transfer dynamics studied in our system and the charge dissociation process in macroscale organic bulk heterojunction blends for OPV applications by assigning the ultrafast time component (∼10 ps) to direct interfacial charge transfer and the slow component (70-200 ps) to diffusion limited charge transfer. This discovery can inspire the development of mixed-composition nanoparticles with new functionality for optoelectronic and theranostic applications.

19.
J Phys Chem Lett ; 9(18): 5548-5554, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30199266

RESUMO

The origin and role of oscillatory features detected in recent femtosecond spectroscopy experiments of photosynthetic complexes remain elusive. A key hypothesis underneath of these observations relies on electronic-vibrational resonance, where vibrational levels of an acceptor chromophore match the donor-acceptor electronic gap, accelerating the downhill energy transfer. Here we identify and detune such vibronic resonances using a high magnetic field that exclusively shifts molecular exciton states. We implemented ultrafast pump-probe spectroscopy into a specialized 25 T magnetic field facility and studied the light-harvesting complex PC645 from a cryptophyte algae where strongly coupled chromophores form molecular exciton states. We detected a change in high-frequency coherent oscillations when the field was engaged. Quantum chemical calculations coupled with a vibronic model explain the experiment as a magnetic field-induced shift of the exciton states, which in turn affects the electronic-vibrational resonance between pigments within the protein. Our results demonstrate the delicate sensitivity of interpigment coherent oscillations of vibronic origin to electronic-vibrational resonance interactions in light-harvesting complexes.

20.
J Am Chem Soc ; 140(8): 3035-3039, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29400956

RESUMO

Here we investigate the photophysics and photochemistry of Ni(II) aryl halide complexes common to cross-coupling and Ni/photoredox reactions. Computational and ultrafast spectroscopic studies reveal that these complexes feature long-lived 3MLCT excited states, implicating Ni as an underexplored alternative to precious metal photocatalysts. Moreover, we show that 3MLCT Ni(II) engages in bimolecular electron transfer with ground-state Ni(II), which enables access to Ni(III) in the absence of external oxidants or photoredox catalysts. As such, it is possible to facilitate Ni-catalyzed C-O bond formation solely by visible light irradiation, thus representing an alternative strategy for catalyst activation in Ni cross-coupling reactions.


Assuntos
Complexos de Coordenação/química , Hidrocarbonetos Halogenados/química , Níquel/química , Transporte de Elétrons , Processos Fotoquímicos , Teoria Quântica , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...